Revision Checklist: GCSE AQA Chemistry (Higher Tier)

	1. ATOMIC STRUCTURE AND THE PERIODIC TABLE	Subject Knowledge (how well do I know this)	Practice (quiz/exam questions)
a.	Elements, compounds & mixtures		
b.	Separating mixtures		
c.	Development of atomic		
	model		
d.	Mass & atomic number		
e.	Relative atomic mass		
f.	Electronic structure		
g.	Groups & periods		
h.	Development of		
	periodic table		
i.	Metals & non-metals		
j.	Group 0 elements		
k.	Group 1 elements		
I.	Group 7 elements		
m.	Transition metals		

	2. BONDING,	Knowledge	<u>Practice</u>
	STRUCTURE, AND THE		
	PROPERTIES OF		
	MATTER		
a.	Ionic bonding		
b.	Covalent bonding		
c.	Dot and cross diagrams		
d.	Metallic bonding		
e.	States of matter		
f.	Properties of ionic		
	compounds		
g.	Properties of small		
	molecules		
h.	Polymers & giant covalent		
	structures		
i.	Properties of metals		
j.	Alloys		
k.	Diamond & graphite		
I.	Graphene & fullerenes		
m.	Nanoparticles		

	3. QUANTITATIVE	Knowledge	<u>Practice</u>
	CHEMISTRY		
a.	Balancing chemical equations		
b.	Conservation of mass		
	Relative formula mass		
	Estimating uncertainty		
c.	Moles		
d.	Using moles to calculate		
	masses		

		1
e.	Using moles to balance	
	equations	
f.	Limiting reactants	
g.	Concentration	
h.	Percentage yield	
i.	Atom economy	
j.	Moles & volumes of gases	

	4. CHEMICAL CHANGES	Knowledge	<u>Practice</u>
a.	The reactivity series		
	Reduction & oxidation		
b.	Extracting metals by		
	reduction		
c.	Ionic & half equations		
d.	Reacting acids with metals		
e.	Neutralisation of acids &		
	naming salts		
f.	рН		
g.	Titrations		
h.	Strong & weak acids		
i.	Electrolysis of molten ionic		
	compounds		
j.	Electrolysis of aqueous		
	solutions		

	5. ENERGY CHANGES	Knowledge	<u>Practice</u>
a.	Exothermic & endothermic		
	reactions		
b.	Reaction profiles		
c.	Calculating energy change of		
	reactions		
d.	Cells & batteries		
e.	Hydrogen fuel cell		

	6. THE RATE AND	Knowledge	<u>Practice</u>
	EXTENT OF CHEMICAL		
	CHANGE		
a.	Calculating rate of reaction		
b.	Factors affecting rate of		
	reaction		
c.	Collision theory & activation		
	energy		
d.	Catalysts		
e.	Reversible reactions		
f.	Le Chatelier's principle		
g.	Factors which affect		
	equilibrium		

	<mark>7. ORGANIC</mark>	<u>Knowledge</u>	<u>Practice</u>
	CHEMISTRY		
a.	Crude oil		

b.	Alkanes	
c.	Fractional distillation	
d.	Properties of hydrocarbons	
	Combustion reactions	
e.	Alkenes	
	Addition reactions	
f.	Cracking	
g.	Alcohols	
h.	Carboxylic acids	
i.	Addition polymerisation	
j.	Condensation polymerisation	
k.	Naturally occurring polymers	

	8. CHEMICAL ANALYSIS	Knowledge	<u>Practice</u>
a.	Purity		
b.	Formulations		
c.	Paper chromatography		
d.	Tests for common gases		
e.	Flame tests		
f.	Identifying metal hydroxides		
g.	Tests for carbonates, halides		
	& sulphates		
h.	Flame emission spectroscopy		·
	Instrumental methods		·

	9. CHEMISTRY OF THE	<u>Knowledge</u>	<u>Practice</u>
	ATMOSPHERE		
	Composition of Earth's		
	atmosphere		
a.	Evolution of Earth's		
	atmosphere		
b.	The greenhouse effect		
c.	Human activity &		
	greenhouse gases		
d.	Global climate change		
e.	The carbon footprint		
f.	Atmospheric pollutants		

	10.USING RESOURCES	Knowledge	<u>Practice</u>
a.	Using Earth's resources		
b.	Potable water		
c.	Waste water treatment		
d.	Low-grade copper ores		
e.	Life cycle assessment		
f.	Recycling		
g.	Preventing corrosion		
h.	Uses of alloys		
i.	Ceramics, polymers &		
	composites		
j.	The Haber process		
k.	NPK fertilisers		

PRACTICALS	<u>Knowledge</u>
RP 1: "Prepare a pure, dry sample of a	
soluble salt from an insoluble oxide or	
carbonate."	
RP 2: "Determine the concentration of one	
of the solutions when reacting a strong	
acid and a strong alkali by titration (when	
the concentration of the other solution is	
known)."	
RP 3: "Investigate the electrolysis of	
aqueous solutions (a hypothesis must be	
formed and developed)."	
RP 4: "Investigate factors affecting	
temperature change when reacting	
solutions together."	
RP 5a: "Investigate how concentration	
affects the rate of reaction by measuring	
the volume of gas produced (a hypothesis	
must be formed and developed)."	
RP 5b: "Investigate how concentration	
affects the rate of reaction by observing a	
colour change (a hypothesis must be	
formed and developed)."	
RP 6: "Use paper chromatography to	
separate coloured substances and	
determine R _f values."	
RP 7: "Use appropriate chemical tests to	
identify unknown ionic substances (all	
ions covered in sections 8e, 8f and 8g)."	
RP 8: "Identify pH and amount of	
dissolved solids in water samples from	
different sources, and use distillation to	
purify them."	

ASSESSMENTS	<u>Duration</u>	Marks	<u>Topics</u>
Paper 1	1 hour 45 minutes	100 marks	Topics 1 – 5
Paper 2	1 hour 45 minutes	100 marks	Topics 6 - 10

The Periodic Table of Elements

1	2											3	4	5	6	7	0
				Key			H hydrogen 1										He helum 2
7 U 3	Be tentium 4		ato	omic sy	ic mass mbol) numbe							11 B seron 5	12 C sartion 6	14 N ntropen 7	16 O svygen 8	F fuctors 9	Ne recon 10
Na Na 11	24 Mg 12					7						AI AI Moreover 13	28 Si stoon 14	31 P P	32 S 16	35.5 CI chistra 17	40 Ar 18
39 K	Ca cuttum 20	45 Sc scandum 21	48 Ti	51 V 23	52 Cr (Ivorsum 24	55 Mn 25	56 Fe 26	59 Co cotall 27	59 Ni Ni 28	63.5 Cu 29	65 Zn mc 30	70 Ga 31	73 Ge	75 As 33	79 Se 34	80 Br 35	84 Kr 36
85 Rb	88 Sr	89 Y yours 39	91 Zr 40	93 Nb 41	96 Mo 42	[97] Tc	101 Ru	103 Rh	106 Pd	108 Ag	112 Cd	115 In return 49	119 Sn 50	122 Sb	128 Te	127 1 setre 53	131 Xe 54
133 Cs 55	137 Ba turism 56	139 La*	178 Hf	181 Ta 73	184 W	186 Re 75	190 Os 76	192 Ir	195 Pt 78	197 Au ### 79	201 Hg 80	204 TI 81	207 Pb	209 Bi 83	[209] Po strum 84	[210] At 85	[222] Rn 86
[223] Fr tandon 87	[226] Ra radum 88	Ac*	[267] Rf	[270] Db datestum 105	[269] Sg 106	[270] Bh totrium 107	[270] Hs hasslut 108	[278] Mt	[281] Ds 110	[281] Rg	[285] Cn 112	[286] Nh	[289] FI ferroum 114	[289] Mc 115	[293] Lv	[293] Ts	[294] Og 118

 $^{\circ}$ The Lanthanides (atomic numbers 58 - 71) and the Actinides (atomic numbers 90 - 103) have been omittee Relative atomic masses for Cu and Cl have not been rounded to the nearest whole number.