Revision Checklist: GCSE AQA Chemistry (Higher Tier) | | 1. ATOMIC STRUCTURE AND THE PERIODIC TABLE | Subject
Knowledge
(how well
do I know
this) | Practice
(quiz/exam
questions) | |----|--|---|--------------------------------------| | a. | Elements, compounds
& mixtures | | | | b. | Separating mixtures | | | | c. | Development of atomic | | | | | model | | | | d. | Mass & atomic number | | | | e. | Relative atomic mass | | | | f. | Electronic structure | | | | g. | Groups & periods | | | | h. | Development of | | | | | periodic table | | | | i. | Metals & non-metals | | | | j. | Group 0 elements | | | | k. | Group 1 elements | | | | I. | Group 7 elements | | | | m. | Transition metals | | | | | 2. BONDING, | Knowledge | <u>Practice</u> | |----|---------------------------|-----------|-----------------| | | STRUCTURE, AND THE | | | | | PROPERTIES OF | | | | | MATTER | | | | a. | Ionic bonding | | | | b. | Covalent bonding | | | | c. | Dot and cross diagrams | | | | d. | Metallic bonding | | | | e. | States of matter | | | | f. | Properties of ionic | | | | | compounds | | | | g. | Properties of small | | | | | molecules | | | | h. | Polymers & giant covalent | | | | | structures | | | | i. | Properties of metals | | | | j. | Alloys | | | | k. | Diamond & graphite | | | | I. | Graphene & fullerenes | | | | m. | Nanoparticles | | | | | 3. QUANTITATIVE | Knowledge | <u>Practice</u> | |----|------------------------------|-----------|-----------------| | | CHEMISTRY | | | | a. | Balancing chemical equations | | | | b. | Conservation of mass | | | | | Relative formula mass | | | | | Estimating uncertainty | | | | c. | Moles | | | | d. | Using moles to calculate | | | | | masses | | | | | | 1 | |----|--------------------------|---| | e. | Using moles to balance | | | | equations | | | f. | Limiting reactants | | | g. | Concentration | | | h. | Percentage yield | | | i. | Atom economy | | | j. | Moles & volumes of gases | | | | 4. CHEMICAL CHANGES | Knowledge | <u>Practice</u> | |----|------------------------------|-----------|-----------------| | a. | The reactivity series | | | | | Reduction & oxidation | | | | b. | Extracting metals by | | | | | reduction | | | | c. | Ionic & half equations | | | | d. | Reacting acids with metals | | | | e. | Neutralisation of acids & | | | | | naming salts | | | | f. | рН | | | | g. | Titrations | | | | h. | Strong & weak acids | | | | i. | Electrolysis of molten ionic | | | | | compounds | | | | j. | Electrolysis of aqueous | | | | | solutions | | | | | 5. ENERGY CHANGES | Knowledge | <u>Practice</u> | |----|------------------------------|-----------|-----------------| | a. | Exothermic & endothermic | | | | | reactions | | | | b. | Reaction profiles | | | | c. | Calculating energy change of | | | | | reactions | | | | d. | Cells & batteries | | | | e. | Hydrogen fuel cell | | | | | 6. THE RATE AND | Knowledge | <u>Practice</u> | |----|-------------------------------|-----------|-----------------| | | EXTENT OF CHEMICAL | | | | | CHANGE | | | | a. | Calculating rate of reaction | | | | b. | Factors affecting rate of | | | | | reaction | | | | c. | Collision theory & activation | | | | | energy | | | | d. | Catalysts | | | | e. | Reversible reactions | | | | f. | Le Chatelier's principle | | | | g. | Factors which affect | | | | | equilibrium | | | | | <mark>7. ORGANIC</mark> | <u>Knowledge</u> | <u>Practice</u> | |----|-------------------------|------------------|-----------------| | | CHEMISTRY | | | | a. | Crude oil | | | | b. | Alkanes | | |----|------------------------------|--| | c. | Fractional distillation | | | d. | Properties of hydrocarbons | | | | Combustion reactions | | | e. | Alkenes | | | | Addition reactions | | | f. | Cracking | | | g. | Alcohols | | | h. | Carboxylic acids | | | i. | Addition polymerisation | | | j. | Condensation polymerisation | | | k. | Naturally occurring polymers | | | | 8. CHEMICAL ANALYSIS | Knowledge | <u>Practice</u> | |----|-------------------------------|-----------|-----------------| | a. | Purity | | | | b. | Formulations | | | | c. | Paper chromatography | | | | d. | Tests for common gases | | | | e. | Flame tests | | | | f. | Identifying metal hydroxides | | | | g. | Tests for carbonates, halides | | | | | & sulphates | | | | h. | Flame emission spectroscopy | | · | | | Instrumental methods | | · | | | 9. CHEMISTRY OF THE | <u>Knowledge</u> | <u>Practice</u> | |----|------------------------|------------------|-----------------| | | ATMOSPHERE | | | | | Composition of Earth's | | | | | atmosphere | | | | a. | Evolution of Earth's | | | | | atmosphere | | | | b. | The greenhouse effect | | | | c. | Human activity & | | | | | greenhouse gases | | | | d. | Global climate change | | | | e. | The carbon footprint | | | | f. | Atmospheric pollutants | | | | | 10.USING RESOURCES | Knowledge | <u>Practice</u> | |----|-------------------------|-----------|-----------------| | a. | Using Earth's resources | | | | b. | Potable water | | | | c. | Waste water treatment | | | | d. | Low-grade copper ores | | | | e. | Life cycle assessment | | | | f. | Recycling | | | | g. | Preventing corrosion | | | | h. | Uses of alloys | | | | i. | Ceramics, polymers & | | | | | composites | | | | j. | The Haber process | | | | k. | NPK fertilisers | | | | PRACTICALS | <u>Knowledge</u> | |---|------------------| | RP 1: "Prepare a pure, dry sample of a | | | soluble salt from an insoluble oxide or | | | carbonate." | | | RP 2: "Determine the concentration of one | | | of the solutions when reacting a strong | | | acid and a strong alkali by titration (when | | | the concentration of the other solution is | | | known)." | | | RP 3: "Investigate the electrolysis of | | | aqueous solutions (a hypothesis must be | | | formed and developed)." | | | RP 4: "Investigate factors affecting | | | temperature change when reacting | | | solutions together." | | | RP 5a: "Investigate how concentration | | | affects the rate of reaction by measuring | | | the volume of gas produced (a hypothesis | | | must be formed and developed)." | | | RP 5b: "Investigate how concentration | | | affects the rate of reaction by observing a | | | colour change (a hypothesis must be | | | formed and developed)." | | | RP 6: "Use paper chromatography to | | | separate coloured substances and | | | determine R _f values." | | | RP 7: "Use appropriate chemical tests to | | | identify unknown ionic substances (all | | | ions covered in sections 8e, 8f and 8g)." | | | RP 8: "Identify pH and amount of | | | dissolved solids in water samples from | | | different sources, and use distillation to | | | purify them." | | | ASSESSMENTS | <u>Duration</u> | Marks | <u>Topics</u> | |--------------------|-------------------|--------------|------------------| | Paper 1 | 1 hour 45 minutes | 100
marks | Topics
1 – 5 | | Paper 2 | 1 hour 45 minutes | 100
marks | Topics
6 - 10 | ## The Periodic Table of Elements | 1 | 2 | | | | | | | | | | | 3 | 4 | 5 | 6 | 7 | 0 | |-----------------------------|----------------------------|---------------------------|----------------|--------------------------------|----------------------------|-------------------------------|-------------------------------|--------------------------|----------------------|------------------------|----------------------|----------------------------|-------------------------------|-------------------------|----------------------------|-----------------------------|--------------------| | | | | | Key | | | H
hydrogen
1 | | | | | | | | | | He
helum
2 | | 7
U
3 | Be
tentium
4 | | ato | omic sy | ic mass
mbol
) numbe | | | | | | | 11
B
seron
5 | 12
C
sartion
6 | 14
N
ntropen
7 | 16
O
svygen
8 | F
fuctors
9 | Ne
recon
10 | | Na
Na
11 | 24
Mg
12 | | | | | 7 | | | | | | AI
AI
Moreover
13 | 28
Si
stoon
14 | 31
P
P | 32
S
16 | 35.5
CI
chistra
17 | 40
Ar
18 | | 39
K | Ca
cuttum
20 | 45
Sc
scandum
21 | 48
Ti | 51
V
23 | 52
Cr
(Ivorsum
24 | 55
Mn
25 | 56
Fe
26 | 59
Co
cotall
27 | 59
Ni
Ni
28 | 63.5
Cu
29 | 65
Zn
mc
30 | 70
Ga
31 | 73
Ge | 75
As
33 | 79
Se
34 | 80
Br
35 | 84
Kr
36 | | 85
Rb | 88
Sr | 89
Y
yours
39 | 91
Zr
40 | 93
Nb
41 | 96
Mo
42 | [97]
Tc | 101
Ru | 103
Rh | 106
Pd | 108
Ag | 112
Cd | 115
In
return
49 | 119
Sn
50 | 122
Sb | 128
Te | 127
1
setre
53 | 131
Xe
54 | | 133
Cs
55 | 137
Ba
turism
56 | 139
La* | 178
Hf | 181
Ta
73 | 184
W | 186
Re
75 | 190
Os
76 | 192
Ir | 195
Pt
78 | 197
Au
###
79 | 201
Hg
80 | 204
TI
81 | 207
Pb | 209
Bi
83 | [209]
Po
strum
84 | [210]
At
85 | [222]
Rn
86 | | [223]
Fr
tandon
87 | [226]
Ra
radum
88 | Ac* | [267]
Rf | [270]
Db
datestum
105 | [269]
Sg
106 | [270]
Bh
totrium
107 | [270]
Hs
hasslut
108 | [278]
Mt | [281]
Ds
110 | [281]
Rg | [285]
Cn
112 | [286]
Nh | [289]
FI
ferroum
114 | [289]
Mc
115 | [293]
Lv | [293]
Ts | [294]
Og
118 | $^{\circ}$ The Lanthanides (atomic numbers 58 - 71) and the Actinides (atomic numbers 90 - 103) have been omittee Relative atomic masses for Cu and Cl have not been rounded to the nearest whole number.